A TWO Year Experience to Accreditation
St Louis Community College
Mechanical Engineering Technology Program

ABET Symposium
Tom McGovern
Associate Professor
St Louis Community College
September 20, 2012

Who is Here?
Lets see what the representation in the room is:

A) Faculty – 2 year college
B) Faculty – 4 year college
C) Administration – 2 year college
D) Administration – 4 year college
E) Staff – 2 year college
F) Staff – 4 year college
G) A group I did not think about
What is your Experience Level with ABET?

A) We have completed an ABET cycle
B) We are preparing for our visit
C) We are in the middle of writing a Self Study
D) We are considering ABET accreditation
E) What is ABET?

Benefits of the ABET Process

- Accreditation
- Administrative support
- Company Needs - Employment
- Self evaluation
ABET Definitions

Program Educational Objectives – “broad statements that describe what graduates are expected to attain within a few years of graduation.”

Student Outcomes – Student outcomes describe what students are expected to know and be able to do “by the time of graduation.”

Assessment – Assessments “evaluate the attainment of student outcomes and program educational objectives.”

Evaluation – Evaluation interprets “the data and evidence accumulated through assessment processes. Evaluation results in decisions and actions regarding program improvement.”

Taken from:
Criteria for Accrediting Engineering Technology Programs Effective for Reviews during the 2012-2013 Accreditation Cycle

ABET – Criterion Overview

- Criterion 1 – The students -
 - Who are you teaching to?
- Criterion 2 – Program Educational Objectives
 - What will graduates be doing in 5 years?
- Criterion 3 - Student Outcomes
 - What will your graduates be able to do?
- Criterion 4 – Continuous Improvement
 - When and how will you evaluate and improve as needed?
ABET – Criterion Overview

- Criterion 5 – Curriculum
 - How are your student outcomes supported?
- Criterion 6 – Faculty
 - Who is teaching your students?
- Criterion 7 – Facilities
 - Where are your students being taught?
- Criterion 8 – Institutional Support
 - How is the program supported by the college?
- Program Criteria
 - Unique requirements to your specific technology degree

Which Criterion is the Most Challenging?

A) Criterion 1 – The students
B) Criterion 2 – Program Educational Objectives
C) Criterion 3 – Student Outcomes
D) Criterion 4 – Continuous Improvement
E) Criterion 5 – Curriculum
F) Criterion 6 – Faculty
G) Criterion 7 – Facilities
H) Criterion 8 – Institutional Support
I) Program Criteria
ABET Help

Three key documents:

Accreditation Procedure and Policy Manual, 2012-2013
The rules for how accreditation will be done

Criteria for Accrediting Engineering Technology Programs, 2012-2013
The definition of what your program must demonstrate

Self-Study Questionnaire Templates
How you demonstrate meeting the Criterion

ABET’s main website
http://www.abet.org/

Team Effort

- Administration
 - President on down
- Data research
 - Graduation rates
 - Employment
 - Entrance cohorts
- Key areas
 - Student services
 - Instructional Resources
 - Math and Science chairs
 - Etc.
- DEPARTMENT
 - Start early
 - Piece by piece
Where it Starts: Mission Statement

St. Louis Community College expands minds and changes lives every day. We create accessible, dynamic learning environments focused on the needs of our diverse communities.

Florissant Valley campus

About the College

- Four campuses at Florissant Valley, Forest Park, Meramec and Wildwood
- Three education centers in St. Louis County, north St. Louis City and downtown St. Louis
- Numerous satellite locations in area business, industrial, neighborhood and educational sites
- Corporate Center in Bridgeton
- Administrative Center, 300 South Broadway
- 3,854 full- and part-time employees
Engineering and Technology Department

Established in 1966 9 Full time faculty and 20 adjuncts

<table>
<thead>
<tr>
<th>Program Title</th>
<th>Day and evening</th>
<th>Modes Offered</th>
<th>Alternative Mode</th>
<th>Name of Degree Awarded</th>
<th>Designation on Transcript</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Science</td>
<td></td>
<td>X</td>
<td>Co-op</td>
<td>Associate in Science</td>
<td>Engineering Science</td>
</tr>
<tr>
<td>Civil Engineering Technology</td>
<td></td>
<td>X</td>
<td>Off Campus</td>
<td>Associate in Applied Science</td>
<td>Civil Engineering Technology</td>
</tr>
<tr>
<td>Construction Management</td>
<td></td>
<td>X</td>
<td></td>
<td>Associate in Applied Science</td>
<td>Construction Management Technology</td>
</tr>
<tr>
<td>Electrical/Electronic Engineering Technology</td>
<td>X</td>
<td></td>
<td></td>
<td>Associate in Applied Science</td>
<td>Electrical/Electronic Engineering Technology</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td></td>
<td>X</td>
<td></td>
<td>Associate in Applied Science</td>
<td>Manufacturing Technology</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td></td>
<td>X</td>
<td></td>
<td>Associate in Applied Science</td>
<td>Mechanical Engineering Technology</td>
</tr>
<tr>
<td>Quality Technology</td>
<td></td>
<td>X</td>
<td></td>
<td>Associate in Applied Science</td>
<td>Quality Technology</td>
</tr>
<tr>
<td>Robotics Technology</td>
<td></td>
<td>X</td>
<td></td>
<td>Associate in Applied Science</td>
<td>Robotics Technology</td>
</tr>
<tr>
<td>Technology Teacher Education</td>
<td></td>
<td>X</td>
<td></td>
<td>Associate in Science</td>
<td>Technology Teacher Education</td>
</tr>
</tbody>
</table>

Mechanical Engineering Technology

- Accredited since 1972 with only a 3 year gap.
- Most recently evaluated in 2010-2011
- Reaccredited

MET Program, 2005-2009 school years

<table>
<thead>
<tr>
<th>Year</th>
<th>FT</th>
<th>PT</th>
<th>FTLE</th>
<th>Grads</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006-2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MET Program Outcomes

1) Demonstrate an ability to identify, clarify and solve technical problems using applied knowledge of math, science and engineering.

2) Understand the importance of staying technically current and keeping pace with rapidly occurring changes in technology.

3) Apply creativity and continuous improvement in the design process.

4) Function cooperatively within multi-disciplinary teams.

5) Show an ability to work effectively in, and appreciate the value of a culturally diverse professional environment.

6) Practice effective oral and written communication.

7) Understand the impact of engineering and technology on global, societal and environmental issues.

ABET Criterion 3 – Student Outcomes

The student outcomes must include, but are not limited to, the following learned capabilities:

a. an ability to apply the knowledge, techniques, skills, and modern tools of the discipline to narrowly defined engineering technology activities;

b. an ability to apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require limited application of principles but extensive practical knowledge;

c. an ability to conduct standard tests and measurements, and to conduct, analyze, and interpret experiments;

d. an ability to function effectively as a member of a technical team;

e. an ability to identify, analyze, and solve narrowly defined engineering technology problems;

f. an ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature;
ABET Criterion 3 – Student Outcomes Continued

g. an understanding of the need for and an ability to engage in self-directed continuing professional development;
h. an understanding of and a commitment to address professional and ethical responsibilities, including a respect for diversity; and
i. a commitment to quality, timeliness, and continuous improvement.
j. a knowledge of the impact of engineering technology solutions in a societal and global context; and
k. a commitment to quality, timeliness, and continuous improvement.

What is the Relationship Between Program Outcomes and ABET Student Outcomes?

A) Your Program Outcomes must be the same as the ABET Student Outcomes
B) Your Program Outcomes have no relation to ABET Student Outcomes
C) Your Program Outcomes can not be changed after the self study
D) Your students must meet all of your Program Outcomes
E) Your chosen Program Outcomes must encompass the ABET Student Outcomes
Link What You’re Doing to ABET

Mechanical Engineering Technology Student Outcomes 2010 vs ABET criteria

<table>
<thead>
<tr>
<th>Program Outcome</th>
<th>Demonstrate an ability to identify, clarify and solve technical problems using applied knowledge of math, science and engineering.</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Outcome</td>
<td>Understand the importance of staying technically current and keeping pace with rapidly occurring changes in technology.</td>
<td>b</td>
<td>d</td>
<td>f</td>
<td>h</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Outcome</td>
<td>Apply creativity and continuous improvement in the design process.</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>f</td>
<td>h</td>
<td>j</td>
<td>k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Outcome</td>
<td>Function cooperatively within multidisciplinary teams.</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>h</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Outcome</td>
<td>Show an ability to work effectively in, and appreciate the value of a culturally diverse professional environment.</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>h</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Outcome</td>
<td>Practice effective oral and written communication.</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Outcome</td>
<td>Understand the impact of engineering and technology on global, societal and environmental issues.</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Current ABET requirements only go to h for Associates programs.

The “Aha!” Moment
Design Assessment Activities for the Program like a Course Design

<table>
<thead>
<tr>
<th>Year and Semester (or Quarter)</th>
<th>Course (Department, Number, Title)</th>
<th>1) Solve technical problems</th>
<th>2) Staying technically current</th>
<th>3) Creativity and improvement in design</th>
<th>4) Function in teams</th>
<th>5) Culturally diverse</th>
<th>6) Effective communication</th>
<th>7) Global, societal, environmental impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE: 131 Engineering Tech. Orientation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME: 151 Manufacturing Process I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE: 101 Technical Computer Program</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGR: 100 Engineering Drawing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG: 101 College Composition I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTH: 144 Tech. Algebra & Trigonometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only part shown for clarity

Select Assessments to Cover Outcomes

Outcome 5 Assessments:
Orientation Ethics Challenge

Outcome 6 Assessments:
GE:511 Project
Processes II “Future Trends”
Energy Conversions Paper

Outcome 7 Assessments:
GE:511 Article reviews
Processes II “Future Trends”
Orientation – “Did you know”
Energy Conversions Paper
Demonstrate What You are Doing

Supporting Materials
Student Projects on Display

Example – Outcome 5

- Section 1 – Summary of Outcome
- Section 2 – Corrective Action
- Section 3 – Assessments
 - Yearly organization
 - Assignment summary for each
 - Rubrics for each
- Final section – supplemental
 - Shows depth
 - Not assessed
Cycle of Evaluation

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Yearly Outcome review plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Solve technical problems</td>
<td>x</td>
</tr>
<tr>
<td>2) Staying current</td>
<td>x</td>
</tr>
<tr>
<td>3) Creative and Improvement in Design</td>
<td>x</td>
</tr>
<tr>
<td>4) Function in teams</td>
<td>x</td>
</tr>
<tr>
<td>5) Cultural Diversity</td>
<td>x</td>
</tr>
<tr>
<td>6) Effective Communication</td>
<td>x</td>
</tr>
<tr>
<td>7) Engineering Impact</td>
<td>x</td>
</tr>
</tbody>
</table>

Analyze the Data

Outcome levels by student survey

Outcome levels by Faculty assessment

2007-current - 4.0 benchmark
Outcome 5 Evaluation Sample

Assessment activities – completed by Faculty
Class Number: GE:131
Assignment: Ethics Challenge

Graduate Survey – completed by students/graduates
Outcome 5 assessment by students, faculty and 3 year average

What is the Effect of not Meeting a Program Outcome Benchmark?

A) The program will not be accredited
B) The program will have to change the Outcome benchmark so it is met
C) The program must show a Corrective Action plan to improve the Student Outcome results
D) There is no effect on the program for not meeting a benchmark
ABET Criterion 4 – Continuous Improvement

Not just this year but every year!

Outcome 5 - Corrective Action Sample

- Imposed from Self Study – DON’T WAIT TO START
- Included changes in binders for visit

Change 1 – more depth on Ethics Challenge
 Added an essay component

Change 2 – Modified assignment in Materials and Metallurgy
 Added cultural element to Materials Acquisition assignment

Outcome 5 assessment by students, faculty and 3 year average

- Overall
- S1 2009-2010
- Fa 2009-10
- St 2008-2009
- Fa 2008-09
- Fa 2007-08
Team Visit - Preliminary Findings

Deficiency – indicates that a criterion, policy, or procedure is not satisfied.

Weakness – indicates that a program lacks the strength of compliance with a criterion, policy, or procedure and a remedial action is required to strengthen the compliance before next review.

Concern – indicates that a program currently satisfies a criterion, policy, or procedure. However, the potential exists for the situation to change to not meeting the criterion, policy, or procedure.

Observation – indicates a comment or suggestion which does not relate directly to accreditation action but is offered to assist the institution in its continuing efforts to improve its programs.

Process note: The Preliminary Findings are edited twice before being official as a DRAFT report. DON’T WAIT TO MAKE CHANGES.

MET Results

Preliminary Findings:

Finding 1: Weakness based on lack of coverage of ethics.
Finding 2: Weakness based on lack of respect for diversity.
Finding 3: Weakness Social Studies and Humanities elective.
Finding 4: Concern – students in the program
Finding 5: Concern – Engineering/Technology clarity
Finding 6: Observation – Physics 1 as pre-req to Mechanics – Statics
Finding 7: Facilities – Outstanding Quality of labs and equipment

Draft Statement:

Finding 1: Weakness based on lack of coverage of ethics.
Finding 4: Concern – students in the program
Finding 5: Concern – Engineering/Technology clarity

All others were removed in editing process.
Due Process Response

MET Outcome 5 example

- Begun after visit
- Clarified existing assignments
- Add 4 new assessments
- Updated Evaluation
- Complete before June

<table>
<thead>
<tr>
<th>Outcome 5:</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>3.4</td>
<td>3.6</td>
<td>3.8</td>
<td>4.2</td>
<td>3.75</td>
</tr>
<tr>
<td>Orientation - Ethics</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Power - Case Study</td>
<td>4.3</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of Materials Case Study</td>
<td>3.4</td>
<td>3.5</td>
<td>3.8</td>
<td>4.57</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Process II Case Study</td>
<td>3.4</td>
<td>3.5</td>
<td>3.8</td>
<td>4.57</td>
<td></td>
</tr>
<tr>
<td>Dynamics Case Study</td>
<td>3.4</td>
<td>3.5</td>
<td>3.8</td>
<td>4.57</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3.4</td>
<td>3.5</td>
<td>3.8</td>
<td>4.57</td>
<td>4.57</td>
</tr>
</tbody>
</table>

Outcome 5 Assessment - Cumulative, Faculty and Student Averages

Final General Review

Commission meets in July to compare final reports
Decisions posted by August 31st

MET Results:

REACCREDITATION
No deficiencies or weaknesses
How Did This Seminar Help?

A) I am looking at the accreditation process totally differently
B) I have a clearer idea of how to do accreditation
C) I picked up a few ideas
D) I did not get much from this
E) Where were the donuts?

Questions?

Tom McGovern
Associate Professor
St Louis Community College
tmcgovern@stlcc.edu
314-513-4313
Community College Differences

Student Body

Timeline

Degree Goals